首页 > 户外 > 知识 > 圆的知识树,关于圆的知识

圆的知识树,关于圆的知识

来源:整理 时间:2025-03-03 11:59:27 编辑:户外旅行 手机版

本文目录一览

1,关于圆的知识

圆的周长公式=C=πd=2πr 圆的面积公式=S=π×r×r

关于圆的知识

2,有关圆的知识有哪些

有关圆的知识:1、半径:圆上一点与圆心的连线段。2、直径:连接圆上两点有经过圆心的线段。3、弦:连接圆上两点线段(直径也是弦)。4、弧:圆上两点之间的曲线部分。半圆周也是弧。(1)劣弧:小于半圆周的弧。(2)优弧:大于半圆周的弧。5、圆心角:以圆心为顶点,半径为角的边。6、圆周角:顶点在圆周上,圆周角的两边是弦。7、弦心距:圆心到弦的垂线段的长。

有关圆的知识有哪些

3,正多边形和圆的知识点

正多边形的概念: 一般地,若边相等,各角也相等的多边形叫做正多边形,如果一个多边形有n条边,那么这个正多边形叫做正n边形。说明:(1)当n=3时,上述两个条件只满足一个条件就可以。(2)当n>3时,多边形必须同时满足上述条件的每一个条件,才能判定是正多边形。

正多边形和圆的知识点

4,高中数学圆的知识点和公式

平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。圆的标准方程:(x-a)2+(y-b)2=r2。(a,b)是圆心坐标,圆的一般方程:x2+y2+Dx+Ey+F=0。圆是一种几何图形。根据定义,通常用圆规来画圆。同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。同时,圆又是“正无限多边形”,而“无限”只是一个概念。圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。

5,有关圆的小知识

画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和园上任意一点的线段是半径,通常用字母r表示;通过圆心且两端都在圆上的线段是直径,通常用字母d表示。 任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率,用字母π(读pài )表示。π是一个无限不循环小数。 π=3.141592653...... 我们在计算时,一般保留两位小数,取它的近似值3.14。 公式:C=πd或C=2πr S=πr2(πr的平方)

6,关于圆的知识点有哪些

关于圆的知识点有:1、圆的概念。圆可以看作是到定点的距离等于定长的点的集合。圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合。2、点圆的位置关系。点在圆内<=>点到圆心的距离小于半径;点在圆上<=>点到圆心的距离等于半径;点在圆外<=>点到圆心的距离大于半径。3、直线和圆的位置关系。相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。相离:直线和圆没有公共点叫这条直线和圆相离。4、正多边形和圆。各边相等,各角也相等的多边形叫做正多边形。正多边形与圆的关系:将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。这个圆是这个正多边形的外接圆。5、有关圆的公式。给直径求圆的周长:c=πd。给半径求圆的周长:c=2πr。给直径求圆的半径:r=d÷2。给周长求圆的半径:r=c÷π÷2。给半径求圆的直径:d=2r。给周长求圆的直径:d=c÷π。给直径求半圆周长:c=πr+d。给半径求半圆周长:c=πr+2r。给半径求圆的面积:s=πr2。

7,圆的知识

圆的特征:圆是由一条曲线构成的封闭图形,圆上任意一点到圆心的距离相等。 圆心和半径的作用:圆心决定圆的位置,半径决定圆的大小 。 圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴 。 同一圆中直径是半径的2倍 圆的周长指围成圆的曲线的长。直径大的圆周长就大,直径小的圆周长就小 圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用π表示,计算时通常取3.14 圆的周长:C=2πr或C=πd 求半径:r=C/2π 求直径:d=C/π 圆的面积意义:圆形物体,图形所占平面大小或圆形物体表面大小是圆的面积 。 面积计算公式:π*r的平方 圆环面积计算方法:S=πR的平方-πr的平方或S=π(R的平方-r的平方) (R是大圆半径,r是小圆半径)

8,九上数学圆知识点总结

九上数学圆知识点总结:圆的周长:C=2πr或C=πd、圆的面积:S=πr2 圆环面积计算方法:S=πR2-πr2或S=π(R2-r2)(R是大圆半径,r是小圆半径) 知识要点一、圆的概念 集合形式的概念1、 圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

9,九年级数学圆这一章的全部知识点

⑴圆的确定:不在同一直线上的三个点确定一个圆。   圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。   ⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。   ⑶有关外接圆和内切圆的性质和定理   ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;  ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。  ③S三角=1/2*△三角形周长*内切圆半径  ④两相切圆的连心线过切点(连心线:两个圆心相连的线段)  〖有关切线的性质和定理〗  圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。  切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。  切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。  切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。  〖有关圆的计算公式〗  1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/180  4.扇形面积S=nπr^2;/360=rl/2 5.圆锥侧面积S=πrl

10,求关于圆的知识

圆的有关性质 一,〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗 1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系; 2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。一个 圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一; 3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半 径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的 圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径; 5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关 问题; 6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦” ③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。 〖考查重点与常见题型〗 1. 判断基本概念、基本定理等的正误,在中考题中常以选择题、填空题的形式考查学 生对基本概念和基本定理的正确理解,如:下列语句中,正确的有( ) (A)相等的圆心角所对的弧相等 (B)平分弦的直径垂直于弦 (C)长度相等的两条弧是等弧 (D)弦过圆心的每一条直线都是圆的对称轴 2. 论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。此种结论的证明重 点考查了全等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识,常以解答题形式出现。 二,〖知识点〗 相交弦定理、切割线定理及其推论 〖大纲要求〗 1. 正误相交弦定理、切割线定理及其推论; 2. 了解圆幂定理的内在联系; 3. 熟练地应用定理解决有关问题; 4. 注意(1)相交弦定理、切割线定理及其推论统称为圆幂定理,圆幂定理是圆和相似 三角形结合的产物。这几个定理可统一记忆成一个定理:过圆内或圆外一点作圆的两条割线,则这两条割线被圆截出的两弦被定点分(内分或外分)成两线段长的积相等(至于切线可看作是两条交点重合的割线)。使用时注意每条线段的两个端点一个是公共点,另一个是与圆的交点; (2)见圆中有两条相交想到相交弦定理;见到切线与一条割线相交则想到切割线定理;若有两条切线相交则想到切线长定理,并熟悉此时图形中存在着一个以交点和圆心连线为对称轴的对称图形。 〖考查重点与常见题型〗 证明等积式、等比式及混合等式等。此种结论的证明重点考查了相似三角形,切割线定 理及其推论,相交弦定理及圆的一些知识。常见题型以中档解答题为主,也有一些出现在选择题或填空题中。
圆的有关性质 一,〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗 1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系; 2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。一个 圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一; 3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半 径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的 圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径; 5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关 问题; 6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦” ③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。 〖考查重点与常见题型〗 1. 判断基本概念、基本定理等的正误,在中考题中常以选择题、填空题的形式考查学 生对基本概念和基本定理的正确理解,如:下列语句中,正确的有( ) (A)相等的圆心角所对的弧相等 (B)平分弦的直径垂直于弦 (C)长度相等的两条弧是等弧 (D)弦过圆心的每一条直线都是圆的对称轴 2. 论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。此种结论的证明重 点考查了全等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识,常以解答题形式出现。 二,〖知识点〗 相交弦定理、切割线定理及其推论 〖大纲要求〗 1. 正误相交弦定理、切割线定理及其推论; 2. 了解圆幂定理的内在联系; 3. 熟练地应用定理解决有关问题; 4. 注意(1)相交弦定理、切割线定理及其推论统称为圆幂定理,圆幂定理是圆和相似 三角形结合的产物。这几个定理可统一记忆成一个定理:过圆内或圆外一点作圆的两条割线,则这两条割线被圆截出的两弦被定点分(内分或外分)成两线段长的积相等(至于切线可看作是两条交点重合的割线)。使用时注意每条线段的两个端点一个是公共点,另一个是与圆的交点; (2)见圆中有两条相交想到相交弦定理;见到切线与一条割线相交则想到切割线定理;若有两条切线相交则想到切线长定理,并熟悉此时图形中存在着一个以交点和圆心连线为对称轴的对称图形。
文章TAG:圆的知识树圆的知识知识树

最近更新